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Abstract. We examine diffractive proton-proton scattering p p → p X and photo- and electroproduction
of ρ0 mesons γ(∗) p → ρ0 X, where X denotes a proton or a final state, into which the proton can go by
diffractive dissociation. Using a functional integral approach we derive the scattering amplitudes, which
are governed by the expectation values of light-like Wegner-Wilson loops, which are then evaluated using
the model of the stochastic vacuum. For the proton, we assume a quark-diquark structure. From the
scattering amplitudes we calculate total and differential cross sections for high centre of mass energy and
small momentum transfer and compare with experiments. Furthermore we calculate isovector form factors
for the proton and the pion within the same model.

1 Introduction

In this article we study inelastic diffractive scattering at
high centre of mass (c.m.) energies

√
s � 20GeV and small

momentum transfer squared |t| � 1GeV2. The low mo-
mentum transfer implies that one has to apply nonpertur-
bative methods to investigate these processes.

Our numerical analysis will be focused on two types of
reactions: hadron-hadron scattering (especially pp → pX)
and photo- and electroproduction of a ρ0 meson γ(∗) p →
ρ0X.

The experimentally observed increase of total cross
sections for hadronic reactions with the c.m. energy [1],
starting at about

√
s = 10GeV, has been described phe-

nomenologically by Donnachie and Landshoff [2] in the
context of Regge theory. The rise of the total hadronic
cross sections can be described by a pomeron with an in-
tercept slightly larger than one [1,2]. For inelastic diffrac-
tion, the pomeron-photon analogy was applied in [3] to
relate the cross section of these reactions in a quantitative
way to the structure functions of deep inelastic electron-
proton scattering. A number of other methods to deal with
inelastic diffractive reactions have been proposed (for re-
views see [4–6]).

A description of soft hadronic high energy reactions,
starting from a microscopic level, was developed in [7]
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where in the case of an abelian gluon model the pomeron
properties were related to nonperturbative aspects of the
vacuum like the gluon condensate introduced by Shifman,
Vainshtein and Zakharov [8]. These methods were gener-
alised to QCD in [9]. The quantity governing the scattering
amplitude was found to be a correlation function of two
light-like Wegner-Wilson loops [10,11]. These correlation
functions are evaluated using the model of the stochas-
tic vacuum (MSV) [12] as formulated in Minkowski space
in [10,11,13]. This method has been applied to various
reactions, for example exclusive vector meson production
[14–16], elastic hadron-hadron scattering [17], and photo-
and electroproduction of pseudoscalar and tensor mesons
[18,19].

In this paper we will extend the model to the descrip-
tion of inelastic diffractive hadron-hadron scattering and
vector meson photo- and electroproduction. The hadronic
scattering amplitudes as derived in [9–11,13–21] and a
brief summary of the basic features of the MSV in its
Minkowskian formulation will be given in the Sects. 2 and
3. Previous results for dσ/dt in the case of elastic scatter-
ing [17] are also reviewed briefly. To obtain results for sin-
gle diffractive dissociation in proton-proton scattering and
ρ0-photo- and electroproduction, the loop-loop correla-
tion functions will be calculated applying two approaches.
Moreover we use two different models for the diffractive fi-
nal state X. In this work, the constituent configuration of
baryons is assumed to be of the quark-diquark type for the
reasons given in [22]. Then baryons act as colour dipoles
like mesons. The numerical results of all reactions con-
sidered here are presented and compared to experimental
data. Finally we calculate the isovector form factors for
the proton and pion within our model in Sect. 5. Our con-
clusions and a summary are given in Sect. 6.
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Fig. 1. h1 + h2 → h1 + X

2 The scattering amplitudes

In this section we present our basic formulae for hadron-
hadron scattering and photo- and electroproduction. We
treat exclusive as well as inclusive processes, where in the
inclusive case only diffractive dissociation of one of the
participating hadrons is considered.

2.1 Hadron-hadron scattering

Consider the reaction

h1(P1) + h2(P2) → h1(P3) +X(P4), (1)

where h1 and h2 are hadrons, X is again h2 or a diffractive
excitation of h2 and Pi denote the four-momenta (Fig. 1).
The hadrons h1, h2 are modeled as quark-antiquark and
quark-diquark wave packets for mesons and baryons, re-
spectively. For the wave functions we have chosen a Bauer-
Stech-Wirbel ansatz [23]. The diffractive final state X is
modeled by a qq̄-pair (or quark-diquark pair) in a colour
singlet state. We then use two approaches. In the first
method we use free plane waves for the quark and anti-
quark. Integration over all allowed values in phase space
and the closure relation then yield all possible diffractive
final states X, where the case of elastic scattering is also
included. The second ansatz, applied to confirm the results
of the first method and to gain additional insight into the
structure of the calculated differential cross sections, uses
the wave functions of a two-dimensional harmonic oscilla-
tor where the ground state corresponds to hadron h2 and
the excited states to the diffractive excitations of h2. Since
these eigenfunctions form a basis, the calculation of cross
sections can be performed as follows: first the cross section
for one specific excited state with definite quantum num-
bers n,m is calculated and then the sum over all excited
states is taken to get the inelastic inclusive diffractive cross
section.

In the framework of the model presented in [11,20] we
obtain the scattering amplitude for reaction (1) as

Sfi = δfi + i(2π)4δ(P3 + P4 − P1 − P2)Tfi,
Tfi = (2is)

∫
d2bT eiqT ·bT Ĵdiff. (2)

Here Ĵdiff is the diffractive profile function for which we
get two expressions depending on which description of the
diffractive final state is used in the calculation. For the
plane wave description we obtain

Ĵp.wave
diff (bT , z

′)

= −
∫

d2xT d2yT
∫ 1

0
dz w31(xT , z)

√
2π

×
√
2z′(1 − z′) e−i∆4T ·yT ϕ2(yT , z′)〈

W+

(
1
2
bT +

(
1
2

− z

)
xT ,xT

)

×W−

(
−1
2
bT + (

1
2

− z′)yT ,yT

)
− 1

〉
G

, (3)

where ∆4T is the relative transverse momentum between
the quark and the antiquark (or diquark) of X (see Ap-
pendix A). For the oscillator description we obtain

Ĵ2d osc.
diff (bT )

= −
∫

d2xT d2yT
∫ 1

0
dz

∫ 1

0
dz′ w31(xT , z)

×Xn,m(yT , z′)ϕ2(yT , z′)〈
W+

(
1
2
bT +

(
1
2

− z

)
xT ,xT

)

×W−

(
−1
2
bT +

(
1
2

− z′
)

yT ,yT

)
− 1

〉
G

. (4)

Here Xn,m(yT , z′) stands for the two-dimensional har-
monic oscillator wave function with quantum numbers
n,m. Inserting in (4) the ground state wave function X0,0

leads to the elastic scattering amplitude as given in [17].
In (3) and (4) w31(xT , z) denotes the profile function

for the overlap between initial and final state of hadron
h1 for fixed xT and z. ϕ2(yT , z′) defines the initial state
wave function of h2. The light-like Wegner-Wilson loops
W± are given by

W± :=
1
3
trV (C±)

=
1
3
tr P exp

(
−ig

∫
C±

dxµGa
µ(x)

λa

2

)
, (5)

where P denotes path ordering and C± is the curve con-
sisting of two light-like worldlines for the quark and the
antiquark and connecting pieces at ±∞. In (3), (4) xT and
yT define the extension and orientation in transverse po-
sition space of the two loops representing the two hadrons
h1 and h2 respectively, z (z′) parametrises the fraction
of the longitudinal momentum of hadron h1 (h2) carried
by the quark. The impact parameter is given by bT , the
light-cone barycentres of the loops are then located at
1
2bT + ( 12 − z)xT and − 1

2bT + ( 12 − z′)yT , respectively
(see [14] and Fig. 2). As x-axis for the transverse vectors
xT , yT and bT we choose qT .

The symbol 〈. . . 〉G denotes the functional integration
which correlates the two loops. In (3) the loop-loop corre-
lation function is multiplied with the profile function w31,
the incoming wave function ϕ2 and then integrated over
all extensions and orientations of the loops in transverse
space as well as over the longitudinal momentum frac-
tion z of the quark of hadron h1, which does not break
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Fig. 2. Orientation and extension of the light-like Wegner-
Wilson loops in a projection into transverse position space

up diffractively. In the plane wave description z′ is part
of the specification of the final state and thus appears as
arguement of Ĵp.wave

diff (bT , z
′) in (3). The phase space in-

tegral then includes an integration over z′. When using
the second method involving the two-dimensional oscil-
lator functions to describe the diffractive final state, one
has to insert the function Xn,m on the r.h.s. of (4) and
to integrate over z′. Thus Ĵ2d osc.

diff (bT ) depends for given
oscillator function Xn,m on bT only.

2.2 Photo- and electroproduction

For the reactions

γ + p → ρ0 + X,

γ∗ + p → ρ0 + X, (6)

where γ (γ∗) denotes a real (virtual) photon, all equations
derived in the previous section remain unchanged but of
course w31(xT , z) in (3) now denotes the profile function
for the overlap between incoming photon and outgoing
meson. We use the wave functions for photon and ρ0 me-
son as in [14]. The reaction can again be depicted as shown
in Fig. 1, with the incoming hadron h1(P1) replaced by a
(virtual) photon and the outgoing hadron h1(P3) by the ρ0
meson. The upper vertex now symbolises the dissociation
of the photon into a quark-antiquark-pair and the follow-
ing formation of the vector meson out of these partons.
Again the momentum transfer is purely transverse and
given by qT . As before, X denotes all possible diffractive
final states into which the hadron h2 can go. Taking all
this into account, the scattering amplitude (2),(3) applies
to this type of reaction as well.

3 Evaluation of the scattering amplitudes

3.1 The loop-loop correlation function
in the model of the stochastic vacuum

Now we perform the functional integrals in (3) and (4)
making use of the MSV.

A detailed presentation of the MSV can be found in
[10–13], where both the original formulation in Euclidian
space-time and the analytic continuation to
Minkowski space-time are discussed. Here we will focus
on some fundamental properties which are relevant for
the evaluation of the expectation value of the loop-loop
correlation function.

The starting point for the model is the correlator of
two gluon field strength tensors Ga

µν at points x1 and x2,
parallel-transported to a common reference point o along
the two curves Cx1 and Cx2 :〈

g2

4π2
Ĝa
µν(o, x1;Cx1)Ĝ

µνb(o, x2;Cx2)
〉
G

≡ 1
4
δabFµνρσ(x1, x2, o;Cx1 , Cx2) (7)

The right hand side depends only on the points x1, x2
and the two curves Cx1 , Cx2 , the common reference point
o can be freely shifted along the curve C12 = Cx1 + C̄x2 ,
where C̄x2 denotes the curve oriented oppositely to Cx2 .
Due to colour conservation, the correlation function is pro-
portional to δab. In the MSV the assumption is made that
Fµνρσ is independent of the choice of the connecting curve
C12. Then Poincaré and parity invariance require Fµνρσ to
be of the following form:

Fµνρσ(z) =
1
24
G2

{
(gµρgνσ − gµσgνρ)

× [
κD(z2) + (1 − κ)D1(z2)

]
+(zσzνgµρ − zρzνgµσ + zρzµgνσ − zσzµgνρ)

×(1 − κ)
dD1(z2)

dz2

}
, (8)

G2 ≡ 1
4π2

〈g2FF 〉 = 〈0| g
2

4π2
Ga
µν(0)G

aµν(0)|0〉, (9)

where z = x1 − x2. Here G2 is proportional to the gluon
condensate 〈0|Ga

µν(0)G
aµν(0) |0〉, D and D1 are invariant

functions normalised to 1 at z = 0,D(0) = D1(0) = 1, and
κ is a parameter determining the non-abelian character of
the correlator. The properties of the functions D and D1
are further specified through the assumption of the MSV
that for space-like separations those functions rapidly fall
to zero on a scale given by the correlation length a ≈
0.3 fm. The Fourier decomposition of those functions is
given by

D(z2) =
∫ ∞

−∞

d4k
(2π)4

e−ikzD̃(k2),

D1(z2) =
∫ ∞

−∞

d4k
(2π)4

e−ikzD̃1(k2). (10)

A suitable ansatz for D̃ and D̃1 is given in [11]:

D̃(k2) =
27(2π)4

(8a)2
ik2

(k2 − λ−2 + iε)4
,

D̃1(k2) =
2
3
27(2π)4

(8a)2
i

(k2 − λ−2 + iε)3
, (11)
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with the constant λ = 8a/3π. The functions of (10),(11)
can be compared to lattice calculations [24,25] for the Eu-
clidian version of the correlator (7) and from a fit one can
extract the following ranges for the parameters G2, a, κ
[25]:

κG2a
4 = 0.39 . . . 0.41,
κ = 0.80 . . . 0.89,
a = 0.33 . . . 0.37 fm. (12)

The expectation value of one single parallel-transported
gluon field strength tensor vanishes due to colour conser-
vation and the fact that the QCD vacuum has no preferred
direction in colour space:

〈Ĝ(i)〉G = 0, (13)

where we have used the abbrevation

Ĝ(i) ≡ Ĝai
µiνi

(o, xi;Cxi). (14)

Furthermore the MSV assumes the vacuum fluctuations
of the field strengths to be determined by a Gaussian pro-
cess. This implies that correlators of more than two gluon
field strengths factorise and thus the process is completely
defined by the second moment of its distribution. Due to
the assumption of a Gaussian process and colour conser-
vation all n-point functions with odd n vanish and we are
left with

〈Ĝ(1) . . . Ĝ(2n)〉G
=

∑
all pairings

〈Ĝ(i1)Ĝ(i2)〉G . . . 〈Ĝ(i2n−1)Ĝ(i2n)〉G. (15)

Now we will make a cumulant expansion [20] for the
loop-loop correlation function

〈W+W−〉G ≡
〈

W+

(
1
2
bT +

(
1
2

− z

)
xT ,xT

)

×W−

(
−1
2
bT + (

1
2

− z′)yT ,yT

)〉
G

(16)

in (3),(4) and then evaluate our result in the framework
of the MSV.

To expand the correlation function, we proceed as ex-
plained in [17]. First the line integrals along the closed
loops C± are transformed to surface integrals with the
help of the non-abelian Stokes theorem where, following
the authors of [11], we choose the mantle of a double pyra-
mid as the integration surface. The basis surfaces S± of
the two pyramids are enclosed by the two loops C± (see
Fig. 3). The common reference point o is chosen to be the
apex, where both pyramids touch, and P+ and P− are the
mantle surfaces of the two pyramids, respectively. Follow-
ing [17] we rewrite the two traces over 3 × 3 matrices oc-
curing in (16) after inserting (5) as one trace (Tr2) of a
matrix acting in the 9-dimensional tensor product space.
With the definition

��
��
��
��

�
�
�
�

x3

x0

x1,2

C+C−

A−

A+

o

Fig. 3. Integration surfaces for the evaluation of the loop-loop
correlation function

Ĝt,µν(o, x;Cx)

:=

{
Ĝa
µν(o, x;Cx)(λa

2 ⊗ 1) for x ∈ P+
Ĝa
µν(o, x;Cx)(1 ⊗ λa

2 ) for x ∈ P−
, (17)

we can now write (16) as the expectation value of one
ordered exponential in the product space, where the inte-
gration surface is given by the mantle P = P+ ∪P− of the
double pyramid:

〈W+W−〉G (18)

=
1
9
Tr2

〈
Pexp

(
− ig

2

∫
P

dσµν(x) Ĝt,µν(o, x;Cx)
)〉

G

.

The cumulant expansion of this expression up to the sec-
ond term reads〈

W+

(
1
2
bT +

(
1
2

− z

)
xT ,xT

)

× W−

(
−1
2
bT +

(
1
2

− z′
)

yT ,yT

)〉
G

=
1
9
Tr2 exp

(
− g2

8

∫
P

dσµν(x)
∫
P

dσρσ(x′)

×
〈
P
(
Ĝt,µν(o, x;Cx)Ĝt,ρσ(o, x′;Cx′)

)〉
G

)

=:
1
9
Tr2 exp C2(bT ,xT ,yT , z, z′), (19)

where C2 is a 9 × 9 matrix invariant unter SU(3) colour
rotations. As shown in [17] this finally leads to

〈W+W−〉G =
2
3
e−i 1

3χ +
1
3
ei

2
3χ (20)

with
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χ(bT ,xT ,yT , z, z′)

=
G2π

2

24

{
I(rxq, ryq) + I(rxq̄, ryq̄)

−I(rxq, ryq̄) − I(rxq̄, ryq)
}
,

I(rx, ry)

= κ
π

2
λ2 ry · rx

∫ 1

0
dv

{( |vry − rx|
λ

)2

K2

( |vry − rx|
λ

)

+
( |ry − vrx|

λ

)2

K2

( |ry − vrx|
λ

)}

+(1 − κ)πλ4
( |ry − rx|

λ

)3

K3

( |ry − rx|
λ

)
. (21)

Here G2, λ, κ are as defined in (8),(11) and K2,3 are the
modified Bessel functions of second and third degree. The
vectors rij with i = x, y and j = q, q̄ are those from the
coordinate origin to the positions of the quarks and anti-
quarks (or diquarks) in transverse space as shown in Fig. 2.
Separating the real and the imaginary part of the above
expression (χ is a real function) gives〈

W+

(
1
2
bT +

(
1
2

− z

)
xT ,xT

)

× W−

(
−1
2
bT +

(
1
2

− z′
)

yT ,yT

)
− 1

〉
G

=

{
2
3
cos

(
1
3
χ(bT ,xT ,yT , z, z′)

)

+
1
3
cos

(
2
3
χ(bT ,xT ,yT , z, z′)

)
− 1

−i2
3
sin

(
1
3
χ(bT ,xT ,yT , z, z′)

)

+i
1
3
sin

(
2
3
χ(bT ,xT ,yT , z, z′)

)}
. (22)

This is the final result for the correlation function of two
light-like Wegner-Wilson loops in the matrix cumulant
method [17]. If we assume |χ| � 1, (22) reduces to

〈W+W− − 1〉G =
{

−1
9
(χ(bT ,xT ,yT , z, z′))2

}
, (23)

neglecting terms of order χ3 and higher. This is the result
of the traditional expansion method [11]. When comput-
ing the numerical results for the cross sections we are in-
terested in, we will use both (22) and (23) and compare
with experimental data. In the following formulae, we will
write {. . . } as an abbrevation for either of the expressions
(22) or (23).

3.2 Hadron-hadron scattering

We now have to specify the hadronic wave functions oc-
curing in (3),(4). For the hadronic wave functions we make

the following ansatz:

ϕi(xT , z) =

√
2z(1 − z)
2πS2

hi
Ihi

e−(z− 1
2 )

2/4z2
hi e−x2

T /4S
2
hi , (24)

wij(xT , z) = ϕi(xT , z)ϕj(xT , z). (25)

Here Ihi
is a normalisation factor given by

Ihi
=
∫ 1

0
dz 2z(1 − z) e−(z− 1

2 )
2/2z2

hi . (26)

The wave functions Xn,m consist of the eigenfunctions
X̃n,m of a two-dimensional harmonic oscillator [26] for the
yT -dependence and an additional part for the z′-depen-
dence as in (24):

Xn,m(yT , z′) =

√
2z′(1 − z′)

Ihi

e−(z′− 1
2 )

2/4z2
hi X̃n,m(yT ),

X̃n,m(yT ) =
1√

((n+m)/2)! ((n−m)/2)!

×


√
S2
hi

2

(
yT
2S2

hi

+
m

yT
− d

dyT

)
n+m

2

×


√
S2
hi

2

(
yT
2S2

hi

− m

yT
− d

dyT

)
n−m

2

×e−β2y2
T /2√

2πS2
hi

eimθy , (27)

where θy is the angle between yT and qT . Now we put
everything together, inserting the wave functions (24)-(27)
and the results (22),(23) for the correlation function of
the Wegner-Wilson loops in (3) and (4). We can simplify
our expressions by exploiting symmetry properties of the
wave and correlation funtions. The replacements xT →
−xT and z → 1 − z, which exchange the quark with the
corresponding diquark (or antiquark in the case of mesons)
in hadron h1, lead to χ → −χ (see Fig. 2 and (21)). On the
other hand these replacements leave the wave functions
invariant and thus the integration over xT and z averages
out the sinχ-terms of (22) when inserted in (3) and (4).
For single diffractive dissociation and elastic scattering we
can therefore replace (22) by

〈W+W− − 1〉G →
{
2
3
cos

(
1
3
χ

)
+

1
3
cos

(
2
3
χ

)
− 1

}
.

(28)

In the expansion method 〈W+W− − 1〉G in (23) is already
even under χ → −χ. In our model, therefore, the ex-
pression for the correlation function is purely real in (23)
and only the real part of (22) contributes. The T -matrix
element is invariant under the exchange of hadron h1 by
its antihadron. Thus we get only C = +1 (pomeron) ex-
change and no C = −1 (odderon) exchange. An imaginary
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part of the correlation function and C = −1 exchange
terms both non-vanishing after integration with the over-
lap functions could arise from the inclusion of higher cu-
mulant terms in (19). We note that in double diffractive
reactions a C = −1 part of the scattering amplitude will
already be present in our approximation with terms up to
the second cumulant in the matrix cumulant method.

For the description of the final state X in the oscil-
lator method we can use analogous arguements. The si-
multaneous replacements yT → −yT and z′ → 1− z′ and
subsequent integration over yT and z′ lead to the cancel-
lation of contributions with odd m in (4) because of the
existence of a factor eimθy in X̃n,m(yT ). Since for these
functions odd m only occur for odd n, the sum over all
excited states in the calculation of cross sections can be
reduced to a sum over wave functions with even n and the
corresponding m’s.

3.3 Photo- and electroproduction of ρ0 mesons

As mentioned in Sect. 2, the main difference in our ansatz
between the T -matrix element of hadron-hadron scatter-
ing and the photo- and electroproduction of a vector me-
son is in the wave functions used to describe the parti-
cipating hadrons and the photon. In electroproduction we
have to consider three polarisation states for both the in-
coming virtual photon and the outgoing vector meson.
Since in our model processes with a change in polarisation
are strongly suppressed (see [14]), they will be neglected
in the following. So we only have to deal with photon and
meson wave functions with the same polarisation. Further-
more the expressions for the two transverse cases are the
same, which leaves us with just two combinations:

w31,L(xT , z) =
1
4π

∑
h,h′

(
ϕ ρ0

h,h′,V (0)(z,xT )
)∗

×ϕγ(∗)

h,h′ (Q2,0)(z,xT ) (29)

= − 1
4π

efρz(1 − z)fL(z)e−ω2
Lx

2
T /2

×2z(1 − z)QK0(εxT ) ,

w31,T(xT , z) =
1
4π

∑
h,h′

(
ϕ ρ0

h,h′,V (1/−1)(z,xT )
)∗

×ϕγ(∗)

h,h′ (Q2,1/−1)(z,xT ) (30)

= − 1
4π

efρfT(z)e−ω2
Tx

2
T /2

×
{
ω2
TεxT
Mρ

[
z2 + (1 − z)2

]
K1(εxT )

+
m(Q2)2

Mρ
K0(εxT )

}
,

with

ε =
√
z(1 − z)Q2 +m(Q2)2 , (31)

Table 1. The parameters of the MSV for the matrix cumulant
and the expansion methods

matrix method expansion method

G2 (529MeV)4 (501MeV)4

a 0.32 fm 0.346 fm
κ 0.74 0.74

fL/T(z) = NL/T

√
z(1 − z)

× exp

(
− M2

ρ

2ω2
L/T

(
z − 1

2

)2
)

. (32)

Here Q2 denotes the virtuality of the photon. Further pa-
rameters are the proton charge e, the mass of the ρ0 meson
Mρ = 768.5 MeV, its decay constant fρ = 150.7MeV and
its radius parameters and normalisation constants ωL/T
and NL/T, which are different for the longitudinal and the
transverse cases. For the values of these parameters and
how to fix them see [14].

In model investigations it has been shown that con-
finement effects can be very well approximated and the
photon densities can be extended to real photons by a
Q2-dependent light quark mass [15]

m(Q2) =

{(
1 − Q2

Q2
0

)
0.22GeV for Q2 < Q2

0

0 for Q2 ≥ Q2
0

,

Q2
0 = 1.05GeV2 . (33)

Of course for photoproduction, that is for Q2 = 0, the
longitudinal overlap function (29) vanishes, as it must be
since real photons have only transverse polarisation.

4 Total and differential cross sections

To calculate cross sections for the reactions considered,
we have to fix our free parameters, namely those of the
MSV: G2, a and κ; and those of the wave functions, the
extension parameter Shi

and the width of the longitudinal
momentum distribution zhi . The set of MSV parameters
used in this work has been established in [17] for the case
of the matrix cumulant method giving (22) and in [14] for
the expansion method giving (23) (see Table 1).

The values given in Table 1 should be considered as
effective values extracted from fits to high energy scatter-
ing data using two different approximate formulae. Thus
the differences between the values in the second and third
column of the table can be taken as a theoretical error
estimate. With fixed parameters the model gives energy
independent cross sections. It has been shown in [11] that
both the energy dependence of the cross section and of
the slope parameter b of elastic scattering can be well de-
scribed by energy dependent hadron extension parame-
ters Shi(s). In [17] it was found that in the framework
of the matrix cumulant method energy dependent exten-
sion parameters can even describe the energy evolution of
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Fig. 4a,b. The differential elastic cross
section dσel/dt [mb/GeV2] at

√
s =

23.5GeV calculated using the matrix
cumulant method (dashed line) and
the expansion method (solid line) com-
pared to the experimental data from
[28]

the whole differential elastic cross sections dσ/dt up to
|t| ≈ 1GeV2. For the matrix cumulant method we adopt
the parametrisation from [17]:

Sp(s) = 0.700
(

s

GeV2

)0.034

fm. (34)

This was obtained by fitting the total cross section as cal-
culated in the model to the soft pomeron part of the
Donnachie-Landshoff (DL) parametrisation for σtot [2].
For the expansion method we have established a similar
connection between Sp and s:

Sp(s) = 0.624
(

s

GeV2

)0.028

fm. (35)

At
√
s = 23.5GeV, for instance, we get Sp = 0.868 fm

and Sp = 0.745 fm from (34) and (35), respectively. The
width of the longitudinal momentum distribution of the
proton has been chosen as zp = 0.4 which gives a best fit
to the isovector form factor of the proton calculated in the
framework of our model (see Sect. 5).

4.1 Proton-proton scattering

4.1.1 Elastic scattering

With all parameters fixed, we can now perform the numer-
ical calculations for the scattering amplitude (2)-(4). We
will start with a short reminder of the results for elastic
scattering obtained in [17] as these will be needed further
on. As mentioned above, elastic scattering can be studied
with our formulae when replacing the excited state wave
function Xn,m in (4) by the ground state wave function
X0,0, which is identical to (24). For s � M2

p the differen-
tial cross section is given by

dσel =
1

16π
1
s2

|Tfi|2 dt. (36)

In [14] it has been argued that the Gaussian shaped dis-
tribution of the longitudinal momentum fraction z (z′)

can be replaced by a delta-function centred at z = 1/2
(z′ = 1/2), since the function χ (21), which determines the
shape of the correlation function, depends only weakly on
z (z′). A numerical investigation of the total cross section
calculated from the optical theorem shows that the result-
ing difference for σtot is smaller than 1%. The profit one
draws from this simplification is a much shorter computa-
tion time in the numerical analysis1. In the following we
will make use of this simplification if not explicitly stated
otherwise.

In Fig. 4 we compare the results from the matrix cu-
mulant and expansion methods to experiment. The first
method, i.e. using (28), gives a reasonable description of
the data for |t| � 1GeV2 over many orders of magni-
tude but underestimates the data at small |t|. The ex-
pansion method, i.e. using (23), gives a better description
of the data for |t| � 0.2GeV2 but overshoots the data
by orders of magnitude for larger |t|. A fit of the form
dσel/dt = A exp b t to the differential cross section gives
b = 13.8±0.4GeV−2 for the matrix cumulant method and
b = 10.0 ± 0.2GeV−2 for the expansion method, respec-
tively. From a fit to the experimental data [28] we obtain
b = 11.6 ± 0.1GeV−2. These fits have been performed
within the range 0 ≤ |t| ≤ 0.2GeV2, since the descrip-
tion of the data over a larger |t|-range would require an
additional term ∝ t2 in the exponent of the fit.

If we calculate the integrated elastic cross section at√
s = 23.5GeV we obtain σel = 5.0mb in the matrix cu-

mulant method and σel = 7.3mb in the expansion method
compared to an experimental value of σel = 6.81±0.19mb
[1]. The fact that the elastic cross section calculated by
the expansion method is closer to the experimental value
than the one from the matrix cumulant method is eas-
ily understood from Fig. 4b. In the integral over dσ/dt
only the region |t| � 0.2GeV2 contributes significantly
and there the expansion method describes the data bet-

1 All occuring integrals in the expressions for the cross sec-
tions are calculated using the Monte-Carlo integration subrou-
tine Vegas [27]. As a rule of thumb, one has to use at least
10 datapoints per integration variable. The substitution thus
decreases the computation time by roughly a factor of 100
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Fig. 5. The integrated elastic cross section as a function of
√

s
compared to the experimental data from [1]

ter. In the region |t| � 0.2GeV2 the result from the ex-
pansion method is bigger than the experimental result,
which has as a consequence that the resulting integrated
cross section is too big. In the following we will restrict
our considerations to σtot, σel and differential cross sec-
tions for |t| � 0.2GeV2. For these quantities the expansion
method gives a satisfactory description of the experimen-
tal data and we will use this method throughout the rest
of our paper. In Fig. 5 we show σel calculated in this way
for 10 GeV ≤ √

s ≤ 10TeV. The calculation agrees rea-
sonably well with the experimental data of [1]. The data
are as well from pp- as from pp̄-experiments. Because our
approach does not include, in Regge terminology, any non-
leading trajectories, we cannot distinguish between these
two reactions and they are described by the same scatter-
ing amplitude.

4.1.2 Single diffractive dissociation

We now turn to inelastic diffractive scattering p p → pX.
Using the plane wave method (2),(3), we calculate the
differential diffractive cross section as

dσdiff = (2π)4
1
2s

|Tfi|2 d5P, (37)

where

d5P =
1

(2π)9
1

4s z′(1 − z′)
d2P4Td2∆4Tdz′ (38)

is the 5-dimensional phase space measure for the three par-
ticle final state formed by the first proton which remains
intact and the quark and the diquark which describe the
second, diffractivly excited proton. As stated above the
description of the diffractive final state X by a free quark-
diquark pair also includes the case of elastic scattering. To
obtain the cross section σsd for single diffractive dissocia-
tion, we have to subtract the elastic contribution and then
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Fig. 6. The integrated single diffractive dissociation cross sec-
tion as a function of
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Table 2. The ratio R of the single diffractive dissociation to
the sum of the single diffractive dissociation and elastic cross
sections from the model and from experiments

R = σsd/(σel + σsd)√
s GeV our calc. values calc. from exp.

23.5 0.47
38.5 0.47 0.49 ± 0.07 ISR [29,30]
62.3 0.46
546 0.45 0.41 ± 0.02 UA4 [31]

0.38 ± 0.01 CDF [32]
1800 0.44 0.33 ± 0.05 E710 [33]

0.32 ± 0.01 CDF [32]

multiply by 2 to account for the reaction where the first
proton breaks up and the second stays intact. We then
find for the integrated single diffractive cross section as a
function of

√
s the result shown in Fig. 6.

Comparing our results to experimental data, one has
to keep in mind that the overall normalisation uncertainty
of the experiments is of O(10%). Furthermore the deriva-
tion of integrated cross sections from experimental data
involves extrapolations of the measured data at given val-
ues of t and ξ = M2

X/s to regions where no data exist. The
extrapolations depend on assumptions on the shape of the
t-distribution and the shape of the ξ-distribution. Differ-
ent experiments make different assumptions and thus the
resulting integrated cross sections differ from each other.
The experimental values on the integrated single diffrac-
tive dissociation cross section quoted here use ξ ≤ 0.05 as
an upper bound in the mass distribution [29–31,33], ex-
cept for [32] where the range is extended to ξ ≤ 0.2. In our
calculation of σsd we integrate over all values of ξ. Because
the mass spectrum obtained in our calculation decreases
rapidly with increasing ξ (see Fig. 8), our numerical result
of the integrated cross section is dominated by the low
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Fig. 7. The differential diffractive cross section dσsd/dt
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√
s = 23.5GeV compared to the experimental

data from [29]

mass region and is not sensible to the integration range
being ξ ≤ 0.05 or ξ ≤ 0.2.

In Table 2 we give the ratio R of the single diffractive
dissociation cross section to the sum of the single diffrac-
tive dissociation and the elastic cross sections from our
model and from different experiments. For

√
s = 546GeV

and 1800 GeV we have used the values of σel and σsd as
quoted by the UA4, CDF and E710 experiments. For the
ISR energy range 20GeV � √

s � 60GeV a lot of data
exist. Since the cross sections do not vary much over this
energy range, we have fitted both σel and σsd as being
proportional to a small power of

√
s and have then calcu-

lated R as a function of
√
s using these fits. The quoted

ISR R-value in Table 2 is then evaluated at an intermedi-
ate energy of

√
s = 38.5GeV.

As can be seen our model predicts that the diffractive
dissociation cross section grows more slowly with increas-
ing energy than the elastic cross section. This is in qual-
itative agreement with experiment, where an even slower
rise of σsd compared to σel is observed.

The result for the differential cross section of the sin-
gle diffractive dissociation is shown in Fig. 7. The calcu-
lated curve describes the slope of the diffractive reaction
quite well even for larger values of |t|. Therefore the agree-
ment with the experiment is reasonably good within the
|t|-range considered here. This could however be partly
accidental. In processes where the proton breaks up, the
exchange of hard and semihard gluons will play an im-
portant role. This exchange is not described by our model
which is an approximation for the infrared behaviour of
QCD. We have seen in elastic scattering that the expan-
sion method overestimates the cross section for values of
|t| larger than 0.2GeV2, see Fig. 4, and this could simulate
the expected contribution of hard or semihard gluon ex-
change in the diffractive dissociation reactions. We stress
however that the fast decrease of the single diffractive dis-
sociation cross section dσsd/dt for values |t| � 0.2GeV2 is
a firm prediction of our model.

To check the validity of our description of the diffrac-
tive final state by a free quark-diquark pair using plane
waves, we now apply the second method, which describes
the diffractive final state X through a sum of wave func-
tions of excited states of a two-dimensional harmonic oscil-
lator, as explained above in Sect. 2.1. In this description,
the final state phase space is two-dimensional as in the
case of elastic scattering and the differential cross section
is given by

dσsd
dt

=
1

16π
1
s2

∑
(n,m) �=(0,0)

|Tfi|2 (39)

with Tfi from (4). The sum runs over all even n for the
reasons given in Sect. 3.2, the associated quantum number
m runs over m = −n,−(n− 2), . . . , n− 2, n. The numeri-
cal analysis shows that both calculations are in very good
agreement to each other and that summing up the contri-
butions from values of n ≤ 6 already gives ≈ 98% of the
result using plane waves.

In the following we will consider the mass spectrum
d2σsd/(dξdt) of the single diffractive dissociation reaction
at

√
s = 23.5GeV for t = −0.0525GeV2, where ξ is the

squared mass of the diffractive final state divided by s. In
our ansatz with plane wave final states ξ then is given by

ξ :=
M2

X

s
=

∆2
4T + (1 − z′)m2

q + z′m2
q̄

z′(1 − z′)s
. (40)

Here mq and mq̄ are the masses of the quark and the
diquark which describe the excited proton state. To take
into account thresholds the mass for the quark has been
chosen to be 330 MeV and for the diquark 660 MeV so
that the sum roughly gives the proton mass. Going back
to (3) we recognise that we now can no longer replace the
Gaussian shaped longitudinal momentum distribution in
the wave function (24) for the hadron h2 which breaks
up by a delta function centred around 1/2, as we have
done in the calculations before, because z′ determines the
value of ξ in (40). This was different for the calculation of
dσsd/dt, where we performed an integration over the full
range of∆4T in phase space and were not interested in any
particular value of ξ. As a consequence of the introduction
of quark masses the integration over z′ now does not run
from 0 to 1, but the integration limits are given by

z′
0/1 =

1
2

− m2
q −m2

q̄

2ξs
∓
√

1
4

− m2
q +m2

q̄

2ξs
+
(
m2

q −m2
q̄

2ξs

)2

.

(41)

This ensures that the mass spectrum starts at M2
X = M2

p

where Mp is the proton mass. Our plane wave descrip-
tion of the diffractive final state of course also includes
elastic scattering. To compare with experimental results
on diffractive dissociation we have to subtract the elastic
contribution. To do so we argue as follows: to obtain the
elastic contribution, we integrate d2σsd/(dξdt) over ξ from
ξ0 = M2

p/s up to ξ1. We then determine ξ1 in such a way
that the integral gives the value of the elastic differential
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Fig. 8. The differential diffractive cross section d2σsd/(dξdt)
for t = −0.0525GeV2 at

√
s = 23.5GeV together with data

from [30]

cross section dσel/dt. We now interprete the mass spec-
trum as consisting of the elastic part, which lies between
ξ0 and ξ1 and the dissociation part, which starts at ξ1.
This procedure allows us to separate the elastic and the
dissociation contributions.

The result of the calculation is shown in Fig. 8 for
t = −0.0525GeV2 and the c.m. energy

√
s = 23.5 GeV

together with the data points from [30], where we deter-
mined ξ1 to be given by ξ1 = 1.63GeV2/s ≈ 0.003.

The experimental values are smeared out over a cer-
tain range of values for ξ because of the detector mass
resolution function. This explains also the data for the
unphysical negative ξ-values. As a consequence the large
peak of the diffractive mass spectrum is much more pro-
nounced in our calculation and the experimental distribu-
tion is flatter around that peak. To compare directly with
the experiment, we would have to fold our results with the
mass resolution function of the detector used in the exper-
iments [30], but unfortunately, this resolution function can
no longer be reconstructed [34]. We note that our model
should give reliable results for small ξ. Indeed, for large
values of ξ the model seems to underestimate the data
considerably. But for this ξ region we expect, for instance,
that our purely nonperturbative treatment of the scatter-
ing must be supplemented by hard gluon radiation which
should lead to high invariant masses for the diffractively
excited state. Furthermore our calculation treats the fi-
nal state as a quark-diquark pair and therefore here no
confinement effects are included.

4.2 Proton-pion scattering

We present calculations for the reaction p π± → pX. Of
course, the vacuum parameters G2, a, κ stay the same but
we still have to fix the pion extension parameters Sπ and
zπ in (24). Proceeding as in the case of proton-proton
scattering we find for the parameters Sπ = 0.60 fm and
zπ = 0.5 at

√
s = 19.5GeV.

Again we will first take a look at elastic scattering. For
a c.m. energy of

√
s = 19.5GeV we find for the integrated

elastic cross sections σel = 3.12mb compared to an exper-
imental value of σel = 3.30 ± 0.11mb [35]. Fitting our re-
sult for the differential cross section by dσel/dt = A exp b t
we find b = 8.7 ± 0.3GeV−2 compared to the experimen-
tally measured value of b = 7.9 ± 0.2GeV−2 for π+ p and
b = 8.4± 0.1GeV−2 for π− p scattering, respectively [36].

Moving on to the reaction where the pion breaks up
diffractively, we calculate σsd and the R-value, which we
define as in the case of proton-proton scattering. We find
σsd = 1.99mb and R = 0.39 where the experimental val-
ues are σsd = 1.90±0.2mb and R = 0.37±0.03 [37] which
is quite good agreement.

4.3 Photo- and electroproduction of ρ0 mesons

In this section we present the results for photo- and elec-
troproduction of ρ0 mesons proceeding exactly as de-
scribed above. Since several investigations on the reaction
γ(∗)p → ρ0p in the approach discussed here have been
published [14,16] we concentrate on the single diffractive
dissociation reaction γ(∗)p → ρ0X, where X does not in-
clude the proton.

The energy dependence introduced in Sect. 4 cannot
explain the strong dependence which has been observed
at HERA for photons with high Q2. We therefore do the
calculations with the parameters fixed for

√
s = 23.5GeV

and concentrate on ratios of cross sections, which should
be more or less energy independent. For photoproduction
we find

σsd(γp → ρ0X)
σel(γp → ρ0p)

= 0.6 , (42)

which agrees within the errors with the experimental value
σsd/σel = 0.5+0.4

−0.16 from [38], which was measured in the
range 50GeV2 ≤ √

s ≤ 100GeV2. In our model the ratio
of single diffractive dissociation to elastic ρ0 production
depends very weakly on Q2. For the range 7GeV2 ≤ Q2 ≤
35GeV2 we find

σsd(γ∗p → ρ0X)
σel(γ∗p → ρ0p)

= 0.54 , (43)

which also agrees with the experimental value σsd/σel =
0.65 ± 0.24 from [39] (here 60GeV2 ≤ √

s ≤ 180GeV2).
The Q2 dependence of our model calculations can be fit-
ted by σsd(Q2) ∝ (Q/Q0)−5.0 compared with σsd(Q2) ∝
(Q/Q0)−5.8±1.9 from experiment. The polarisation ratio of
the outgoing ρ0 mesons has been calculated in the range
7GeV2 ≤ Q2 ≤ 35GeV2:

σL,sd
σL,sd + σT,sd

= 0.71 . (44)

This has to be compared with the experimental result
σL,sd/(σL,sd + σT,sd) = 0.79 ± 0.15.

5 Form factors in the model

In this section we will study form factors within our model.
We do not intend to perform a precision calculation of
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form factors but we will apply the calculation to extract
values for the width of the longitudinal momentum distri-
butions of the proton and the pion, zp and zπ, respectively,
by fitting our results to experimental data.

5.1 The electromagnetic form factors of the proton

The coupling of the electromagnetic current to the proton
can be described by

〈p(P ′, s′)|jµ(0)|p(P, s)〉
= ūs′(P ′)

[
F1p(Q2)γµ +

iσµνqν
2Mp

F2p(Q2)
]
us(P ), (45)

where the momentum transfer is q = P ′ − P , Q2 = −q2,
Mp is the proton mass and F1p, F2p are the Dirac and Pauli
form factor of the proton, respectively. Now we choose a
coordinate system such that q is purely transverse:

Pµ =
1
2
P+n

µ
+ +

1
2
P−n

µ
− − 1

2
qµ,

P ′µ =
1
2
P+n

µ
+ +

1
2
P−n

µ
− +

1
2
qµ,

q =


 0

qT
0


 , n± =




1
0
0

±1


 ,

P− =
(
1
4
q2
T +M2

p

)
/P+. (46)

In the high energy limit, P+ → ∞, we get for the matrix
element (45) (see [40])

〈p(P ′, s′)|jµ(0)|p(P, s)〉 (47)

= P+n
µ
+ χ†

s′

[
F1p(Q2) − σ3qT · σ

2Mp
F2p(Q2)

]
χs + O(1),

where χs, χs′ are the Pauli two-component spinors. F1p
multiplies the spin-non-flip part, F2p the spin-flip part of
the matrix element. Calculating the spin average of this
expression leads to

1
2

∑
s

〈p(P ′, s)|jµ(x)|p(P, s)〉 = P+n
µ
+F1p(Q

2) + O(1).

(48)

We describe the calculation of the Dirac form factor of the
proton in the framework of our model in Appendix B. In
the following we consider the matrix element of the third
component of the isospin current jµ3 . Its matrix element
between proton states is as in (45),(47), with Fip replaced
by Fiv, related to the form factors of proton and neutron
by

Fiv =
1
2
(
Fip(Q2) − Fin(Q2)

)
(i = 1, 2). (49)
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Fig. 9. The isovector form factor of the proton for Sp = 0.77 fm
and different values of zp compared to the experimental data
from [42–44]

With the wave functions (24) we obtain

F1v(Q2) =
1
2Ip

∫ 1

0
dz 2z(1 − z)

×e−(z− 1
2 )

2/2z2
p e− z2

2 S2
pQ

2
, (50)

where Ip is the normalisation factor (26). For this calcu-
lation we need only the expectation value of one Wegner-
Wilson loop. The expectation value over one single loop is
1 in both the matrix cumulant method and the expansion
method. Thus, in our model the form factor is just the
Fourier transform of the squared wave function.

We will now use (50) to determine zp and Sp. It turns
out that in the range 0 ≤ Q ≤ 0.5GeV the form factor
depends sensitively on Sp but only weakly on zp. From a fit
to experiment in this region we obtain Sp = 0.77 fm. With
Sp fixed to this value we show in Fig. 9 our result (50)
for F1v for different values of zp. The experimental values
have been calculated from the experimental data for GEp

and GMp from [42,43] and a fit of the experimental data
on GEn and GMn [44] according to (49) and the relation
between the Dirac (F1p,n) and the electric (GEp,n) and
magnetic (GMp,n) form factor of the proton and neutron,
respectively:

F1N (Q2) =
GEN (Q2) + τGMN (Q2)

1 + τ
,

τ =
Q2

4M2
N

(N = p, n). (51)

The best fit is found for zp = 0.4. As can be seen from
Fig. 9, zp, which fixes the width of the longitudinal mo-
mentum distribution of the constituents, plays no impor-
tant role for Q � 0.5GeV. For larger values of Q however,
our fit is substantially improved when using a Gaussian
shaped z-dependence instead of a delta-function centred
around z = 1/2, which is equivalent to zp → 0.

It has to be noted, that the proton extension param-
eter Sp obtained from (50) is not, and need not be, the
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same as the one used in the hadronic scattering processes
in the previous sections. Whereas the hadronic extension
parameter has been allowed to be energy dependent (see
(34),(35)) to account for the rise of σtot with

√
s, the ex-

tension parameter connected with the form factor has a
fixed value for all energies as the form factor itself is energy
independent and is related to the electromagnetic radius
of the proton as follows. Using the definitions

〈r2〉p = −6
dGEp(Q2)

dQ2

∣∣∣∣
Q2=0

,

rpem =
√

〈r2〉p, (52)

relations (49),(51) and the experimental value

dGEn(Q2)
dQ2

∣∣∣∣
Q2=0

= 0.019 fm2 (53)

from thermal-neutron-electron scattering [45], we get from
our model

rpem = 0.81 fm. (54)

This coincides with the value one obtains for the pro-
ton electromagnetic radius when describing the electric
form factor of the proton by the dipole parametrisation
[42], which also results in rpem = 0.81 fm. From scatter-
ing experiments one finds rpem = 0.88 ± 0.03 fm or rpem =
0.92 ± 0.03 fm, depending on which fit is used for the ex-
perimental data on GEp(Q2) for small Q2 [42]. The Lamb
shift measurements [46] give rpem = 0.890±0.014 fm. Thus
our result (54), as well as the one calculated from the
dipole parametrisation, is smaller than the experimental
value for rpem. Our calculation as well as the dipole fit de-
scribe the data [43] for GEp rather well for Q � 0.4GeV.
But for smaller Q the data [42] indicate a rapid change in
the slope dGEp(Q2)/dQ2 which is described neither by our
model nor by the dipole parametrisation. Such an “anoma-
lous” behaviour of GEp and GEn for small Q2 has been
related to QCD vacuum effects in [47].

5.2 The electromagnetic form factor of the pion

For the charged pions π± the matrix element of the elec-
tromagnetic and the third component of the isospin cur-
rent are equal. Choosing again the coordinate system as
in (46) with Mp replaced by mπ we get

〈π+(P ′)|jµ(0)|π+(P )〉 = (P+n
µ
+ + P−n

µ
−)Fπ(Q

2). (55)

Here the matrix element can be expressed by only one
form factor Fπ. The calculation of this matrix element in
our model leads to

Fπ(Q2) =
1
Iπ

∫ 1

0
dz 2z(1 − z)

×e−(z− 1
2 )

2/2z2
π e− z2

2 S2
πQ

2
. (56)

 
 
 

0 0.5 1.0 1.5 2.0 2.5 3.0
0

0.2

0.4

0.6

0.8

1

Q [GeV]

F
π
(Q

2 ) zp = 0.50
zp = 0.25
zp → 0

Fig. 10. The pion form factor for Sπ = 0.68 fm and different
values of zπ compared to the experimental data from [48]

We compare (56) to experimental data for Fπ from [48] in
Fig. 10. As for the proton the transverse extension parame-
ter Sπ can be fitted in the range 0 ≤ Q ≤ 0.5GeV with the
result Sπ = 0.68 fm. Using the analogue of relation (52)
for the pion, this value gives an electromagnetic radius
rπem = 0.64 fm, which is consistent with the experimental
value rπem = 0.663± 0.006 fm [48]. For values Q � 0.5GeV
our fit becomes sensitive to the width of the longitudinal
momentum distribution of the constituents. For the pion,
the best fit for the width of this distribution is given by
zπ = 0.5. The broader distribution compared to the pro-
ton is related to the smaller mass of the pion, which is in
agreement with the parametrisation of the hadron wave
functions in [23].

6 Conclusions

In this work we have calculated total and differential cross
sections for elastic and inelastic diffractive scattering at
high c.m energies and small momentum transfer. In our
model we start from a microscopic description of the scat-
tering of quark-antiquark and quark-diquark wave pack-
ets and use functional integral methods to get expressions
for the scattering amplitudes. The correlation functions
of light-like Wegner-Wilson loops governing these ampli-
tudes are evaluated in the framework of the model of the
stochastic vacuum [10–13]. The hadron-hadron scattering
amplitudes are obtained by multiplying the parton scat-
tering amplitudes with suitable hadronic wave functions
[23], or the photon wave function [14] in the case of photo-
and electroproduction. Both a matrix cumulant expansion
for the correlation function of two Wegner-Wilson loops
as developed in [17] and an expansion method [11,14] are
used.

The free parameters of our model are those of the
model of the stochastic vacuum: G2, a and κ, and the
ones in the wave functions: Shi and zhi , determining the
width of the transverse and longitudinal momentum dis-
tributions of the constituents of the hadrons, respectively.
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These parameters have been determined in previous work
[11,17] on elastic scattering. The extension parameters Shi

are allowed to depend on the c.m. energy according to (34)
and (35) respectively. In this sense different hadrons are
characterised through their radii, which come out close
to the corresponding electromagnetic radii of the hadrons
for energies

√
s ≈ 20GeV. The values for zhi

are obtained
from a calculation of form factors in our model. Our re-
sult for the isovector Dirac form factor of the proton and
the electromagnetic form factor of the pion, as well as the
electromagnetic radii extracted from them, compare rea-
sonably well to experimental data.

With all parameters fixed, integrated and differential
cross sections are calculated and compared to experimen-
tal results [28–32]. The calculated integrated elastic cross
sections agree with the experimental values within the nu-
merical and experimental errors for a wide range of c.m.
energies starting at about

√
s = 20GeV up to the Teva-

tron energy
√
s = 1800GeV. Our model does not dis-

tinguish between pp and pp̄ scattering or pπ+ and pπ−
scattering, respectively. In the approximation we use here
we have C = +1 exchange only.

Furthermore the rise of the integrated cross sections
in inelastic diffractive reactions as a function of

√
s is cal-

culated. Our calculated ratio σsd/(σel + σsd) is in rough
agreement with experiment. The experimentally observed
behaviour that the diffractive dissociation part of the cross
section increases more slowly with

√
s than the elastic one

is reproduced qualitatively in our calculation.
For photo- and electroproduction of ρ0 mesons we re-

strict ourselves to ratios of integrated cross sections. The
ratio of single diffractive dissociation to elastic cross sec-
tions is found to be in the range 0.5 . . . 0.6 for Q2 ≤
35GeV2, consistent with the experimental results. The
Q2-dependence of the integrated single diffractive disso-
ciation cross section as well as the polarisation ratio of
the produced ρ0 mesons also agree with the experimental
values.

To summarise, our model is quite well suited to de-
scribe inelastic diffractive hadronic reactions at high c.m.
energies (

√
s � 20GeV) and small momentum transfer.

Further progress could be made when including higher
cumulant terms in (22) which would contribute to both
C = +1 and C = −1 exchange.

Another area where our model can be applied is dou-
ble diffractive dissociation, where C = −1 contributions
(odderon exchange) occur already in our present approx-
imation. This will be the topic of a following investiga-
tion. The upcoming experiments at RHIC will be a rich
source for new experimental data for both single and dou-
ble diffractive dissociation in hadronic reactions at high
c.m. energies. Therefore the study of inelastic diffractive
scattering will remain an interesting and instructive field
of work, where effects of nonperturbative QCD can be
studied.
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Pirner, A. Rauscher and M. Rüter for valuable discussions.

Appendix

A Definition of ∆T

The light-cone momenta of the quark and the antiquark
(or diquark) of the diffractive final state X are given by

p− = z′P−, p′
− = (1 − z′)P−,

pT = z′PT +∆T , p′
T = (1 − z′)PT −∆T ,

(57)

where P− is the longitudinal and PT the transverse mo-
mentum ofX, which moves in negative x3 direction, there-
fore P+ ≈ 0. The longitudinal momentum fraction carried
by the quark is z′. Lorentz invariance requires z′ to ap-
pear also in the transverse components of pT and p′

T as
defined above. The relative transverse momentum between
the quark and the antiquark (or diquark) is given by

∆T =
pT − p′

T

2
+
(
1
2

− z′
)

PT . (58)

B Calculation of the form factor

Starting point for the form factor calculation is the matrix
element of the third component of the isospin current at
x = 0

Jµ3 ≡ 〈h3(P ′)|jµ3 (0)|h1(P )〉 (59)

with

jµ3 (x) =
∑
ψ

ψ̄(x)γµ
(
1
2
τ3
)
ψ(x) (60)

Here
∑

ψ denotes the sum over quark fields u, d and τ3 is
the third Pauli isospin matrix. The hadrons h1, h3 are sup-
posed to move in positive x3-direction with P+ = P ′

+ → ∞
(see 46). In analogy to the description of hadron-hadron
scattering in [11,20] we therefore denote the incoming
hadron by h1 and the outgoing hadron by h3. The steps
required to compute the form factor from this expression
are completely analogous to those discussed in [11,20] that
lead to the T -matrix element (2), with the difference be-
ing that there are now additional contractions between the
quarks and diquarks (or antiquarks in the case of mesons)
of the hadrons h1, h3 and the quark fields of the current
jµ3 when applying the LSZ reduction formalism. By con-
sidering the isospin current we ensure that contributions
which contain subdiagrams arising from contractions be-
tween the quark fields of the current drop out because
they are proportional to tr τ3 = 0. We describe now the
form factor calculation for the π+ meson, modeled as ud̄
wave packet.

Using the same notation as in [20] we obtain Jµ3 (59)
by first calculating the matrix element of jµ3 between qq̄
states and then folding with the wave functions of the
wave packets.
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Fig. 11a,b. The two contributions to the matrix element
〈ud̄|jµ

3 |ud̄〉

Jµ3 =
∫

d2∆3T

∫ 1

0
dz3

1
(2π)3/2

1√
2
δs3,−s′

3

×ϕ̃∗
3(z3, ∆3T )

1√
3
δA3A′

3

×
∫

d2∆1T

∫ 1

0
dz1

1
(2π)3/2

1√
2
δs1,−s′

1

×ϕ̃1(z1, ∆1T )
1√
3
δA1A′

1
〈ud̄|jµ3 |ud̄〉

〈ud̄|jµ3 |ud̄〉 ≡
〈
u(p3, s3, A3)d̄(p′

3, s
′
3, A

′
3)
∣∣∣jµ3 (0)∣∣∣u(p1, s1, A1)d̄(p′

1, s
′
1, A

′
1)
〉
, (61)

where si, Ai are spin and colour indices, respectively and
ϕ̃1,3 are the Fourier transforms of the wave functions (24)

ϕ̃i(z,∆T ) =
1
2π

∫
d2xT e−i∆T ·xTϕi(z,xT ). (62)

Applying the LSZ reduction formalism we can express the
matrix element 〈ud̄|jµ3 |ud̄〉 (61) as an integral over the
quark 6-point-function. We get here only two terms de-
picted graphically in Fig. 11 which are to be interpreted as
follows. We consider a fixed gluon background. The quark
and antiquark travel in this background and the current
either hooks onto the quark line (Fig. 11a) or the antiquark
line (Fig. 11b). The matrix element (61) is then obtained
by averaging over all gluon potentials with a measure given
by the functional integral (see [20] for the details). In the
high energy limit for u und d̄ the scattering amplitudes in
the fixed gluon background reduce to Wegner-Wilson line
operators which are closed to a loop W+ by the meson
wave functions. This is indicated by the dashed lines in
Fig. 11. Putting everything together we obtain

〈π+(P ′)|jµ3 (0)|π+(P )〉 (63)

=
P1+n

µ
+

2

∫ 1

0
dz

∫
d2xT ϕ∗

3(z,xT )ϕ1(z,xT )

×
(
ei(1−z)qT ·xT + e−izqT ·xT

)〈
W+(

1
2
xT ,xT )

〉
G

.

A straightforward calculation in the MSV gives that
the expectation value of the correlation function of one

Wegner-Wilson loop is equal to 1. By a shift in the inte-
gration variable the d2xT integration can then be reduced
to a Gaussian integral over the wave functions and we find
as the final result for the matrix element (59)

〈π+(P ′)|jµ3 (0)|π+(P )〉

=
P1+n

µ
+

Iπ

∫ 1

0
dz 2z(1 − z) e−(z− 1

2 )
2/2z2

h e− z2
2 S2

hq2
T . (64)

Let us now turn to the proton form factors. In our
simple ansatz the proton consists of a quark and a scalar
diquark, which should be favoured over the vector diquark
due to dynamical reasons [49]. The spin of the proton is
then carried by the quark. This together with the spin
conservation on the parton level has as consequence that,
in our model, we get for the matrix element of jµ3 between
proton states an expression similar to (64):

〈p(P ′, s′)|jµ3 (0)|p(P, s)〉 = P+n
µ
+χ

†
s′F1v(Q2)χs (65)

with F1v(Q2) given in (50). Thus we get only a spin non
flip and no spin flip contribution in the matrix element
(47), that is, out model gives F2v(Q2) = 0. This is cer-
tainly not a very good approximation. But on the other
hand the spin flip part in (47) is suppressed by |qT |/(2Mp)
for qT → 0. Thus the matrix element (47) is still reason-
ably described by the model for small enough |qT |.

To summarise, we have outlined in this appendix a cal-
culation of isovector form factors using the same methods
as for the scattering processes. The results are in essence
as in [40] taking our simple ansatz for the wave functions
of the hadrons into account.

References

1. D.E. Groom et al. (Particle Data Group), Eur. Phys. J.
C15, 1 (2000)

2. A. Donnachie, P.V. Landshoff, Phys. Lett. B296, 227
(1992)

3. A. Donnachie, P.V. Landshoff, Nucl. Phys. B244, 322
(1984)

4. J.R. Forshaw, D.A. Ross, “Quantum chromodynamics and
the pomeron”, Cambridge University Press (1997)

5. A. Hebecker, Phys. Rep. 331, 1 (2000)
6. K. Goulianos, Nucl. Phys. B, Proc. Suppl. 12, 110–134

(1990)
7. P.V. Landshoff, O. Nachtmann, Z. Phys. C35, 405 (1987)
8. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys.

B147, 385, 448, 519 (1979)
9. O. Nachtmann, Ann. Phys. 209, 436 (1991)
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Nachtmann, M. Rüter, Eur. Phys. J. C9, 491 (1999)
19. E.R. Berger, A. Donnachie, H.G. Dosch, O. Nachtmann,

Eur. Phys. J. C14, 673 (2000)
20. O. Nachtmann, High Energy Collisions and Nonperturba-

tive QCD, in: “Perturbative and Nonperturbative Aspects
of Quantum Field Theory”, H. Latal, W. Schweiger (eds.),
Springer Verlag, Berlin/Heidelberg (1997)

21. H.G. Dosch, E. Ferreira, Phys. Lett. B318, 197 (1993); E.
Ferreira, F. Pereira, Phys. Rev. D55, 130 (1997); E. Fer-
reira, F. Pereira, Phys. Rev. D56, 179 (1997); M. Rüter,
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